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Previously developed characteristic-wave-based boundary conditions  for 
multicomponent perfect gas mixtures are here extended to account for real 
gases. Following the general methodology, the characteristic boundary 
conditions are derived from the wave decomposition of the inviscid Eu- 
ler equations, and  the wave amplitude variations are  determined from the 
prescribed boundary conditions on the flow variables in conjunction with  a 
general real gas equation of state.  The formulation is tested on the propa- 
gation of acoustic waves  which are shown to exit the computational  domain 
with minimal reflection at  a subsonic non-reflecting outflow boundary. The 
results from this formulation are compared with those of a simplistic sub- 
stitution of the real gas thermodynamic  properties into previously derived, 
perfect gas characteristic  relations, and  it is  shown that  the simplistic sub- 
stitution is deficient, particularly for situations  with species sources (rep- 
resenting mass emission and/or chemical reactions) in the  computational 
domain. 

Key  words: partial differential equations, fluid mechanics, classical thermody- 

namics and  heat transfer. 
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1. INTRODUCTION 

Boundary conditions for fluid dynamic equations play a crucial role in determin- 

ing the character of the solution. Since  most  fluid dynamic problems of practical 

interest  are complex, a solution to  the set of differential equations and boundary 

conditions is usually found numerically rather  than analytically. For these  types of 

solutions Poinsot and Lele [l] distinguish between  physical and numerical boundary 



conclitions. The physical  1)ountiary conditions are those that arc intrinsically im- 

posed by the problem  to he solved and are associated with the differential equations. 

The numerical boundary conditions are associated with the difference implementa- 

tion of the differential equations and can be considered as compatibility relations 

that must be added  to  the physical boundary conditions to palliate the uncertainty 

in the variables that  are not specified by the physical boundary conditions. Indeed, 

for some types of physical problems described by the Euler or Navier-Stokes (NS) 

equations, the number of necessary and sufEcient boundary conditions is smaller 

than  the number of primitive variables [2], [l], and the issue of the specification of 

the remaining number of variables introduces the concept of numerical boundary 

conditions. As Poinsot and Lele [l] note, these numerical boundary conditions must 

satisfy the differential equations and also must prevent the introduction of spurious 

numerical effects such as wave reflections from the boundaries of the computational 

domain. 

Boundary conditions derived from characteristic wave analysis were presented by 

Kreiss [3], Engquist and  Majda [4], Higdon [5], Thompson [6], Poinsot and Lele [l] 

and Baum et al. [7]. Although this  type of analysis is consistent with the Euler 

equations,  it does not seem applicable to  the NS equations which are  not hyperbolic. 

The essential idea of using a characteristic wave analysis for the NS equations is 

discussed by Dutt [2] and is based on the fact that  at high Reynolds number,  Re, 

the NS equations may  be considered as an incompletely elliptic perturbation of the 

Euler equations. Gustafsson and Sundstrom [8] note that while  for finite Re the 

NS equations  cannot be classified as hyperbolic, elliptic or parabolic, for Re -+ co 

the NS equations  constitute a quasi-linear hyperbolic system. Therefore, at  these 



conditions the essence of the NS equations may he considered to be hyperbolic, with 

the diffusive terms providing only 'corrections' to their hyperbolic behavior. This 

crucial observation allowed Poinsot and Lele [1] to use Thompson's [6] derivation 

of numerical boundary conditions for hyperbolic systems to derive a similar set for 

the NS equations. When implemented for a variety of example problems, these 

numerical boundary conditions proved robust  and yielded solutions  in agreement 

with the expected physics of the problem. More recently, Baum et al. [7] extended 

the work of Poinsot and Lele [l] to multicomponent reactive flow problems where 

the new issue is that of the source terms in the mass fraction and energy equations. 

Although  not explicitly stated,  this extension implicitly assumed that  the mass 

fractions and energy equations may also be an incompletely elliptic perturbation 

of the Euler-type equations. This implication is correct since in the classical, low 

pressure equations the molar and heat fluxes are  proportional to  (ScRe)-l  and 

(Pr  Re)-l, respectively, where Sc is the Schmidt number and  Pr is the  Prandtl 

number.  These  studies were all performed for  fluids obeying the perfect gas law. 

However, there  are many practical applications where the fluid is not  a perfect 

gas. Such situations occur in high pressure reactive flows typical of rocket engines, 

Diesel engines or gas turbine engines, as well as in fluid  flowing in pipes laid on the 

ocean floor. The importance of real gas equations of state (EOSs) was highlighted 

by Shyue [9] in his development of the algorithm for compressible multicomponent 

liquid-gas flow using the van der Waals EOS. The new algorithm was built on 

a previous interface-capturing approach  and focussed on accurate wave tracking 

resolution, including shock tracking. 



The present work is devot.ed t,o tht? tlcrivatiorl of accurate m c l  consistent bound- 

ary conditions for reactive flows  where the fluid  is a real gas. Section 2 is first 

devoted to new aspects of the conservation equations that may  be important for 

real gases, and  then  to the derivation of the boundary conditions. This derivation 

follows the method of Thompson  [6], Poinsot and Lele [l] and  Baum et al. [7] 

whereby a local  one-dimensional  inviscid (LODI)  set of equations, described at  the 

boundary in characteristic form, embodies the essential behavior at  the boundary. 

The wave amplitude variation in the characteristic wave formulation is then con- 

sistently computed to satisfy the desired boundary conditions for a general real gas 

EOS, and  the viscous conditions are separately applied as in Poinsot and Lele [I]. 

In Section 3 we discuss the generic implementation of these boundary conditions 

for typical problems encountered in fluid dynamics, and in Section 4 we test  the 

derived boundary conditions for three specific  problems  involving propagation of 

acoustic waves. We compare the results of these calculations with those of similar 

calculations where the results of Baum et al. [7] are simplistically used by replacing 

in their final results the perfect gas thermodynamic  quantities  with equivalent real 

gas quantities,  and we  show that  the simplistic approach leads to numerical prob- 

lems and inaccuracies. Finally, we summarize this work and offer further comments 

in the Conclusion section. 

2. GENERAL EQUATIONS 

Harstad  and Bellan [lo], [ll], [12] have  derived the multicomponent conservation 

equations for real gases,  non ideal mixtures. These equations have the typical 

form of the NS equations augmented by the species and energy equations,  and by 
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the EOS, with the exception t,hat t,llc  ciifiusive terms in the species and energy 

equations now contain additional t,crms. In the species and energy equations,  the 

respective Fick mass diffusion and Fourier heat diffusion terms  are now respectively 

complemented by the Soret and Dufour terms representing the  thermal diffusion 

contribution.  These conservation equations  are 

where t is the time, xj  is the j t h  coordinate, p is the mass density, uj is the  j th  

velocity component, T is the  temperature, Y, is the mass fraction of species a (for 

N species Yo = l) ,  p is the pressure and ET = E + 4uiui is the  total energy 

(internal energy, E ,  plus kinetic energy). Additionally, rii is the Newtonian viscous 

stress tensor 

N 



where p is the  mixture viscosity  which is in general a function of the thermodynamic 

state variables, J ,  is the molar flux and q I K  is the Irwing-Kirkwood (subscript I K )  

form of the  heat flux [131. The Einstein summation convention (summation over 

repeated indices) is  used  for i and j ,  but not over  Greek indices cy and /3. 

For example, in this general situation which includes thermal diffusion effects, 

the molar and heat fluxes [14] for a binary mixture  are given by 

where D is the mass diffusivity, m, is the species molar weight, m = CaZ1 maXa 

is the  mixture molar weight, & is the universal gas constant, X;, is a thermal con- 

ductivity (see below), CYD is the mass diffusion factor calculated from the fugacity, 

N 

%x, as 



are  the  partial molar  volume and  the  partial molar enthalpy, respectively, v and h 

being the molar  volume and molar enthalpy, respectively. Furthermore,  the molar 

volume is related to  the density by v = m / p ,  and X ,  = mY,/m, is the species 

molar fraction. The  thermal conductivity X;, is  defined in [ll] and [12] from 

the  transport  matrix.  It can  be shown that X;, does not correspond to  the kinetic 

theory (subscript KT ) definition of the  thermal conductivity in that lirn,,o X;, # 

X,* but  it is related to  the  thermal conductivity, X,  through 

where limp,o X = XKT as discussed in [ll] and [12]. Although  currently  there is  no 

information as to  the functional form of with respect to  the  primary variables 

(p,T,Y,)  and/or  its magnitude,  Harstad and Bellan [ll], [12] have determined  its 

approximate value  for the heptane-nitrogen pair from comparisons of numerical 

predictions with a partial set of data; once  this coefficient  was determined,  the 

remaining part of the  data  set was  used to validate the model. 

Therefore, the general form of the flux matrix is 



where the coefficients of this  matrix can be  identified  from direct comparisons with 

Eqs. 6-9. Clearly, it is  difficult a priori to  state what is the essential character 

of these equations: parabolic, elliptic or hyperbolic.  Since the present boundary 

conditions derivation is intended  to be  valid at higher than  atmospheric pressures, 

and since the Soret and Dufour contributions are known to become  progressively 

more important with increasing pressure [15], the question arises as to whether 

Dutt's [2] conditions regarding the form of the equations that may be  treated  with 

the characteristic wave approach is still satisfied. It is outside the scope of this 

work to prove that  the condition of the incomplete elliptic perturbation is here 

valid  for the mass fractions and energy equations; instead, we base our inference 

on a comparison with the familiar set of equations discussed by Baum et al. [7]. If 

we can show that there is a set of variables for which the more general equations 

including Soret and Dufour effects assume a form similar to  the diffusion equations 

based on the Fick and Fourier diffusive  fluxes, then we  will assume that  the method 

of Baum  et a l .  [7] remains valid. 

An analytical diagonalization of the species and energy equations operators under 

the quasi-steady, boundary layer assumptions yields  eigenvalues of the  transport 

matrix [16], which for a binary  mixture  are an effective m a s  diffusivity, D , f f ,  and 

a thermal conductivity, & s f ,  quantifying departures from D and X 
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where i is the positive root of an algebraic equation, n = p/m is the molar density, 

and C, is the molar heat capacity at constant pressure. In Eqs. 15 and 16 CYBK is 

the Bearman-Kirkwood (subscript B K )  thermal diffusion factor corresponding to 

the BK form of the heat flux ([13]). It can be  shown that lim,,o CYIK # CYKT and 

lim,,o CYBK = Q K T ,  and that [12] 

C X I K  and CYBK are the new transport coefficients that  are introduced by the Soret (in 

the molar fluxes) and  the Dufour (in the heat flux) terms of the  transport  matrix, 

and  are characteristic of the particular species pairs under consideration. Since a h  

is a thermodynamic  function,  it is  sufficient to know either CYIK or CXBK to have 

the other  thermal diffusion factor determined. The values of CYIK and CYBK will be 

discussed in Section 4. 

Since the second term in the right hand side of Eq. 15 and  the  third  term in the 

right  hand side of Eq. 16 are  both positive, it is apparent that  the mass diffusivity 

diminishes whereas the  thermal conductivity is enhanced as  thermal diffusion ef- 

fects become important.  Both effective  coefficients are indeed positive defined (as  

they physically should be),  indicating that  the set of  new equations is of the type 

discussed by Baum  et al. [7], and  that  the concepts of Dutt [2] may still apply. 

The same analysis can be extended to N component mixtures with similar results, 



yic:lciillg N effective IIlikss cliffusivit,ics.  However, it is irnrncdiatc!lv clear that tlm 

ellipticity o f  the system of equations is not determined by the c:f€octive dlffusivi- 

ties which are always reduced compared to ideal mixtures (crg = 1) atmospheric 

conditions (LYBK <<< 1) situations] because for non-ideal mixtures CXD < 1 and if 

thermal diffusion  effects are  important one may  have X1X2aiK&nD< comparable 

to  unity.  What  truly determines the level of ellipticity of the system is X,ff which 

may  possibly reach large values compared to X. Calculations performed with this 

model [12] for heptane-nitrogen in the present range of (p ,  T )  (see Section 4) yielded 

X,ff = O(X). Based on this  circumstantial evidence it is still relevant to proceed 

with the derivation of relations based on characteristic lines in order to analyze the 

fate of waves crossing the  boundary of a computational domain. However, we note 

that because of the enhanced value of X, the ellipticity of the system of equations 

does increase with increasing pressure, and depending on the values of the thermal 

diffusion factors the essentially hyperbolic behavior of the system may be lost. 

As in Poinsot and Lele [l] and Baum  et al. [7], we start by analyzing the Eu- 

ler equations] which contain the needed characteristic behavior at  the boundaries. 

Whereas in principle the  entire enlarged Navier-Stokes equations should be ana- 

lyzed, in fact the Euler equations alone provide the  characteristic behavior of the 

solution and therefore they  are analyzed hereafter. 



2.1. Euler  Equations 

The conservative form of the Euler equations augmented by the species and 

energy equations is 

where ET is the  total energy per unit mass. This is a system of N + 5 differential 

equations in the three-dimensional case. 

The pressure is given by an EOS, a state being uniquely specified by the internal 

energy E ,  the density and the mass fractions 



d p  d p  duj - - + + j - + p - - 0 ,  at dXj  d X j  

where the speed of sound, c, is  given by 

(for brevity, the subscript Y, on a derivative denotes that all the mass fractions 

are held constant). We chose here to develop the characteristic wave relationships 

based on the pressure rather  than on the temperature because waves are directly 

related to p rather  than T ,  making the former variable the prime choice. We present 

in Appendix A an equivalent derivation based  on TI similar to  that of Baum et al. 

(71. 



i-)E p a ~ j  i3E - + " 

at axj  axi + uj- = 0 ,  

by substituting 

and a similar expression for d E / %  into Eq. 29. The  internal  energy derivatives 

appearing in Eq. 30 can  be  computed from the EOS, as described below. 

2.1.1. Real Gas  Relations 

The EOS, assumed here to have the most general form p = p ( T ,  v ,  YI,  . . . , YN) ,  is 

the relationship from  which c as well as 

all be calculated. From the EOS we can calculate the isentropic speed of sound 

( F )  p,y,, ' (%) p,y, and (3) P,P7yQ can 
a#P 

where K~ is the isentropic compressibility, which  is related to  the isothermal com- 

pressibility KT 



where 

and C, is the molar heat capacity at constant pressure 

with H being  the enthalpy per unit mass and h being the  enthalpy per mole, 

h = m H  

The molar heat capacity at constant volume  is 

In  terms of the  partial molar quantities,  the enthalpy and molar volume are  written 

as 



lo; 

N N iV N 

where the  partial molar quantities were  defined in Eq. 11. From the above thermo- 

dynamic relationships one may now calculate the desired internal energy derivatives 

and one can now  observe that  the speed of sound is in fact the isentropic speed of 

sound 

2.1.2. Perfect Gas Relations 
In the perfect gas case, the EOS is 



where y = Cp/Cv 

h, = Cp,,T, 

v, = v ,  

The internal energy is 

(44) 

(45) 



We note at this point that since Poinsot and Lele [l] define y through Eq. 50, it 

is tempting to simply translate  their perfect gas wave decomposition relationships, 

wave amplitude variations and ensuing results to real gases by replacing y - 1 with 

[ ~ ~ ( p  + pE)]”.  This equality is obtained from a consistency condition  with the 

conservation equations by equating c2 calculated according to Eq. 42 with [p+ 

pE(y  - l)]/p. We call this a ‘simplistic approach’ in contrast with the fundamental 

approach  taken below, and show in Section 4 that this simplistic approach does not 

capture  the complex nature of real gas behavior. 

2.2. Euler Equations Wave Amplitude  Variations 

Following the procedure introduced by Thompson [6] and  elaborated by Poinsot 

and Lele [I] and by Baum et al. [7], the wave decomposition is performed for generic 

equations 



and Aj are matrices: 

r 1 

0 

0 

0 

0 

0 

0 

0 

U j  

... 

... 

... 

... 

... 

... 

The wave decomposition involves computing the eigenvalues and eigenvectors, and 

from these the wave amplitude variations. For the sake of brevity  and clarity, 

we will present below  only the analysis pertinent  to A' and d+/dxl ,  referring to 

boundary conditions across a surface of fixed 2 1 .  A similar derivation is made for 

the  other two  dimensions. 



i u1 p 0 0 0 0 ... 0 

0 0 U l O  0 0 ... 0 

0 0 O U l O  0 ... 0 

0 PC2 0 0 U1 0 ... 0 

0 0 0 0 0 U 1  ... 0 

A' = 

its eigenvalues, Xi,  are  determined from 

det(X1- A') = (X - 2 ~ 1 ) ~ ' ~  [(X - ~ 1 ) '  - c2 = 0 1 

as 

(57) 

These eigenvalues represent  either the velocities of sound waves moving in the 

negative ( X , )  or positive ( X N + ~ )  directions along the 2 1  axis relative to  the local 

convection velocity, or the velocities of waves  moving at  the local convection velocity 

(X2 to XN+4). 



Associated with these  eigenvalues  are t.he left  eigenvect,ors r! o f  A' satisfying 

1 . A' = X1: 

r 1 

The procedure is continued by computing the quantities Li from C; = Xildr$/dxl = 



As pointed out by Poinsot and Lele [l], by  consequence of their definition 

(l3) at = - t i ,  

and  thus  the Ci represent the  time variation of the wave amplitude for each com- 

ponent of the vector 4 ,  each Ci being associated with a wave having the speed 

Xi .  By manipulating  the Ci one may influence the amplitude of waves crossing a 

given boundary and in particular  hope to suppress spurious, unphysical waves.  We 

note  that, as mentioned above,  diffusive terms  are not included in this analysis and 

neither are source/sink terms; the implicit assumption is that  the ellipticity of the 

equations plays a  secondary role in determining  the character of the solution at  the 

boundary. 



2.3. Euler Equations Wave Decomposition 

According to Poinsot and  Lek 111, it is  possible to find potential Ci values for 

the more general case of the complete equations (see Section 4 below) by exploring 

the simpler case of a LODI system of equations. These LODI relationships are only 

used to find constraints between the dependent variables and the wave amplitude 

variation at the domain boundaries. 

To accomplish this analysis, the Euler equations are cast in terms of the wave 

amplitude variations by first calculating the spatial derivatives in  terms of the Li: 



The LODI system for the primitive variables containing time- and XI-derivative 

terms is recast in  terms of the Ci as: 

-+c3=0, au2 

at 

- + c4 = o ,  at 

6% - + La+4 = 0; cr = 1, N .  at 
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From the  above Eqs. 78-83, one can find the conservative variables: 

- 
at + Y,dl+  pda+* = 0; a = 1, N ,  



L N + 5  - CI 

where the di are groups of terms involving x1 derivatives that must be constrained 

by conditions suppressing numerically spurious behavior across the x1 boundary. 

For a perfect gas the energy equation becomes 

3. APPLICATION OF CHARACTERISTIC  BOUNDARY 

CONDITIONS 

In the previous section, wave decomposition was used to rewrite the  time  and 

spatial derivatives in terms of wave amplitude variations. The implementation of 

the method consists in determining the correct values of these wave amplitude 

variations according to  the  nature of the problem to be solved. In this process we 



distinguish between the outgoing waves  which carry information from the interior 

of the  computational  domain  and which  therefore are based on  the solution of the 

conservation equations, and  the incoming waves  which carry information from the 

exterior of the domain  to the region  where the solution is sought; these  incoming 

waves are  the origin of the spurious behavior that must be mitigated. 

The implementation of the method consists in calculating the  amplitude variation 

of outgoing waves  from the derivatives at  the boundary, which are  based on the in- 

terior points, whereas the  incoming wave amplitude variations are  determined from 

the boundary conditions. In the discussion that follows, it is assumed that waves 

travelling in the 5 1  > 0 direction exit the computational  domain. The definition of 

incoming and outgoing waves  is  reversed if  waves entering the domain have Xi < 0. 

With  this convention, at  a (subsonic) boundary where 0 < u1 < c,  the outgoing 

wave amplitudes  are  computed from the interior points, whereas the incoming wave 

amplitude (L1 corresponding to X1 = u1 - c )  is  derived  from the specified bound- 

ary conditions. On the  other  hand, at a (subsonic) boundary  where "c < u1 < 0, 

the incoming wave amplitude variations are set to zero (meaning that there  are 

no waves), except for those that can  be derived  from the specified boundary con- 

ditions, whereas the outgoing wave amplitude variation ( L N + 5  corresponding to 

X N + ~  = u1 + c)  is computed from the interior points. 

3.1. Subsonic Slip-wall Boundary Conditions 

At slip walls, the normal velocity  is  zero,  i.e. u1 = 0. Then,  from Eq. 79, 

L1 = L N + 5  and  the remaining wave amplitude variations are  determined from the 

interior points using Eqs. 67 - 71. 
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3.2. Subsonic  Non-reflecting  Outflow  Boundary  Conditions 

As discussed in Poinsot arld  Lele [ 11, theoretically a non-reflecting condition could 

be imposed by setting  the  amplitude of incoming  waves to zero, i.e. C1 = 0. 

However, this leaves the flow with no way to  maintain  its pressure. To mitigate t h s  

unphysical condition, the pressure at 'infinity' is imposed through C1 = K ( p  - pm) 

with K = ( ~ ( 1  - M 2 ) c / L  where 0 is a constant, il/l is the maximum Mach number 

in the domain and L is a  characteristic size of the domain. The value of 0 can be 

adjusted  to fit the requirement of the problem and  an optimal value of 0.58 has 

been proposed by Rudy and Strikwerda [17] and implemented by Poinsot and Lele 

[l] in one of their example problems. 

The remaining wave amplitude variations are determined from the interior  points 

using Eqs. 67 through 71. 

3.3. Supersonic  Outflow  Boundary  Conditions 

In  the supersonic case, all the waves are outgoing, so the wave amplitude varia- 

tions  are  determined from the interior points using Eqs. 66 - 71. 

4. TESTS:  PROPAGATION OF ACOUSTIC WAVES 

To test  the implementation of the consistent boundary condition based on the 

characteristic wave method we consider the one-dimensional propagation of an 

acoustic wave in a two-hmensional domain. 



The computations  are performcxcl for a supercritical two-componcnt nitrogcn- 

heptane flow using the Peng-Robinson EOS as in  Miller et al. [la]: 

RUT Am 
P =  

( V  - Bm) (u2 + 2vBm - BL) ' 
- 

where A,,, and B, are given from mixing rules as 

(97) 

The thermodynamic  properties are obtained  through various derivatives and func- 

tions of the Gibbs energy (G): 

where the superscript 0 represents the 'low pressure' reference condition for the 

integration as generally used in the  departure function formalism described by 

Prausnitz  et al. [19].  Since the integral is ill defined for a zero pressure reference 

condition, we choose po = lbar such that vu = &T/po. This leads to 

h = G - T ( g )   = h o + p - & T + K 1  
P A "  



where ho is the reference  molar enthalpy  and Cp" = dho/dT is the reference molar 

heat capacity, 

The conservation equations for the binary  heptanenitrogen mixture  are those of 

Section 2 with heptane being species 1 and nitrogen being species 2. 

All test cases  below pertain  to a two-dimensional domain ( 2 1 ,  z 2 )  of respective 

dimensions L1 = 0.2 m and L2 = 232 m. The initial condition specifies uniform 



and  the density is calculated from the EOS. These initial conditions lead to two 

waves, each  propagating  toward  one  boundary. We test  the validity of the boundary 

conditions implementation by computing  three subsonic ( M ,  = 0.4) cases with 

a1 = 0.1, u2 = 5.678, b = 6 . 8 5 9 ~  T = 600K  and p ,  = 60 atm. Also evaluated 

is the simplistic approach whereby the  term - is replaced by - f p  in the 

characteristic form of the energy  equation derived  from the perfect gas formulation 

[ l ] ,  and Lcg = ,& = 0 for the mass fractions. For each of the  test cases, we compare 

the predictions of the simplistic approach  with those of the  fundamental  approach 

derived here. 

1 
7 - 1  P C 2  

The numerical scheme in the present simulations uses fourth-order Runge-Kutta 

time  integration  and eighth-order finite-differencing, and  the resolution is 50 x 232 

points. Periodic conditions are employed  in the x1 direction, and subsonic non- 

reflecting outflow conditions are used with null mass fraction gradient in the x2 

direction. The viscous conditions are applied as recommended by Poinsot and Lele 

[l]: for the subsonic outflow, the gradients of the heat flux and of the shear stresses 

normal to  the boundary  are  set to zero. 



Test 1: The first  case has. an initially uniform condition for tllc mass fraction 

( a : ~  = 0 )  with 111 =145 m/s. Figure 1 shows the density and pressure before the 

waves  reach the boundaries ( N t i m e  is the number of time steps), whereas Fig. 2 

shows them after the wave has reached the boundaries. As displayed in the figures, 

both p and p remain constant, as expected;  the small high frequency oscillations 

can be attributed  to  the high-order (eighth-order) finite-differencing. We note, how- 

ever, that  the fundamental  characteristic condition derived herein shows minimal 

reflection, in  contrast to  the simplistic approach result where the reflected waves 

can clearly be discerned. 

Test 2: The second case has an initially linear mass fraction (a3 = 0.2) with 

Z L ~  =137 m/s.  The results are depicted in Figs. 3 and 4 where it is clear that  the 

results  are similar to Test 1: minimal reflection is obtained using the fundamental 

approach whereas there  are spurious reflections in the simplistic approach. The 

p profile remains linear at these early times because the diffusional characteristic 

time is considerably larger than  the times at which the solution is illustrated. The 

acoustic time scale is t ,  = O.5L2/aS N 3.2 x lov4 s whereas the diffusional time 

scale estimated from the centerline values of the solution is t D  = 0 . 5 L ~ / [ p D   CY^ 

( a Y h / a ~ ) ]  N 0.531 S. 

Test 3: The  third case has the same  initial condition as the first,  but  has a 

time-varying mass fraction resulting from a finite heptane mass source term having 

a Gaussian profile. This mass source is intended to mimic features of mass sources 

that would arise from chemical reactions or the mass emission (not necessarily evap 

oration, since at  supercritical conditions there is only a single phase) from chunks 

of supercritical fluid (usually modeled as droplets) in a spray. Due to this h e p  



t,allo mass source term,  thc Inass fract,ion is increasing with time shown in Fig. 

5 whoro the two  lines plot,ted correspond to the time stations of t,he density  and 

pressure profiles illustrated in  Figs. 6 and 7. As in Tests 1 and 2, the  fundamental 

compatibility conditions based on the characteristic wave analysis allow the waves 

to exit the boundary, whereas the simplistic approach exhibits significant reflec- 

tion. Just as important,  but different  from Tests 1 and 2, the density and pressure 

profiles  from the two boundary conditions do not overlap before the waves reach 

the boundary. The discrepancy is particularly  notable at  the boundary, where the 

density profile computed using the fundamental approach relaxes smoothly but  the 

simplistic approach leads to a sharply increasing gradient. These results show that 

for multicomponent fluids the  nature of the solution is  affected by the simplistic 

approach not only at the boundaries, but also in the entire domain. 

5. CONCLUSIONS 

Consistent boundary conditions based on characteristic wave analysis were here 

derived for multicomponent flows governed by real gas equations of state.  The 

governing equations account not only  for departures from the perfect gas equation 

of state,  but also for mixture non-ideality and for thermal diffusion effects. The 

characteristic wave analysis is based on the inherent assumption that  the elliptic 

terms  act only as corrections to the essentially hyperbolic operator.  Thus, diffu- 

sional terms  are not part of the consistent boundary condition analysis, but  are 

used in  the governing equations once a solution is sought. It has been pointed  out 

that, based on the results of a diagonalization of the species and energy equations 

operators,  the condition of weak ellipticity, which underlines this analysis, may 



not.  always  be satisfied when therlrlal diffusion r?ffocts are important.  Wllether this 

condition is satisfied tlepends on the ( p .  T ,  k , )  regime and  on  the species under 

consideration, determining  the value of the effective thermal conductivity. 

The conditions derived herein have  been tested on the  one-dimensional  propaga- 

tion of acoustic waves  in a two-dimensional  domain by using subsonic non-reflecting 

boundaries for a binary nitrogen-heptane mixture at 600 K and 60 atm. Moreover, 

boundary conditions derived by simplistically replacing the gas constant in the re- 

sults of Baum et al. [7] with its equivalent real gas quantities have also been  tested. 

It is shown that whereas using the fundamental analysis results in the acoustic 

waves properly passing through the boundaries  without reflections, the use of the 

simplistic approach yields significant reflections at  the boundaries. Most discrep 

ancies occurred when a source term was added to  the mass fraction equations; in 

this case, additional  to  the reflections at  the boundaries, the solution within the 

entire  domain was  affected  by the simplistic approach, exhibiting differences  from 

that found using the fundamental approach. 

6. APPENDIX  A:  DERIVATION OF THE  COMPATIBILITY 

CONDITIONS  USING  THE  TEMPERATURE  AS  A  VARIABLE 

A mathematical development similar to  that of Baum et al. [7] is  given here for 

readers who  find that in their application the  natural primitive variable is T rather 

than p .  The basic equations in conservative form are 

d e  a F .  - -+.'+c=o at d X j  
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where 

where the S 's  are source terms (e.g.  Miller and Bellan (201) with SI = E,  SI,^. As 

in Baum et a l .  [7] and above, the characteristic form of the  equations is obtained 

from their primitive form 

where 

and Aj = P-l . Q j ,  C = P-' ' where P E dG:/dU and Q j  E dFj/dU.  The 

matrix P has the same form as in Baum et al. [7] with the diagonal elements equal 



and differing from Baum et al. [7] 



with 

We note  that for a perfect gas, matrices P and Aj coincide with those  obtained by 

Baum et al. [7]. Following the derivation of Baum et al. [7] for the boundary whose 

normal is in the j = 1 direction, we calculate the eigenvalues of A’. However, for 

notational convenience, here we order the eigenvalues differently so as to obtain a 
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more compact notation when  specifying the vector and  matrix elements 

The first two  eigenvalues correspond  to  the acoustic modes, the  third to the  entropy 

mode, the  fourth  and fifth to  the transverse velocities u2 and u3, and finally the 

last a last ones correspond to the mass fraction modes. Corresponding to  the 

eigenvalues,  left  eigenvectors are used as rows of a matrix S', while (S')-' has as 

its columns the right eigenvectors of A'. The elements of (S1)-' are (Sl),' = 6,j 

except 

(s1);:+5 = --- , (S1)$ = 0. P va 
a v  ma 

The mode  amplitude variations are defined  using the left eigenvectors through 



where M' P.(S')-l.  The explicit expressions for C and 2 are: 

LC1 = (u1 + c) - + pc- 
[::1 E::] ' 
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arid 

L3 - = a@+&) - 1 E' u1 1 2 1  
c 2 c   2 c   1 ) ~ ~  - %.] C , ax1 

- - -(- + l ) t l  + "(2 - 

- 
= "(-131 + zL2 - L3) + p L 5 ,  u3 1  1 L5 = 

1 c2 2 

where 



= -(- - -)' 1 HT 211 

2 c2 c 

These relationships which are valid for real gases and non-ideal mixtures  are equiv- 

alent to those of Baum et al. [7] which  were  derived  for perfect gases and ideal 

mixtures only. 

ACKNOWLEDGMENT 

This  study was conducted at  the  Jet Propulsion Laboratory (JPL)  and spon- 

sored jointly by the Air  Force  Office of Scientific Research  under the direction of 

Dr. Julian Tishkoff and by the Army Research Office under the direction of Dr. 

David  Mann under an interagency agreement  with the National  Aeronautics and 

Space Administration. The  computational resources  were provided by the JPL 

Supercomputing Center. 



, 
42 

REFERENCES 

1 .  T .  .I. Puinsot and S. K.  Lele, Boundary  conditions for direct  simulations u f  compressible viscous 

flows, . J .  Comp. Phgs. 101, 10-1 (1992). 

2. P. Dutt,  Stable boundary  conditions and difference schemes for Navier-Stokes equations, SIAM 

J .  Numer.  Anal. 25(2), 245 (1988). 

3. H.-0 .  Kreiss, Initial  boundary value problems for hyperbolic systems, Commun. Pure Appl. 

Math. 23, 277 (1970). 

4. B. Engquist and A. Majda, Absorbing  boundary-conditions for numerical-simulation of waves, 

Math.  Comput. 31(139), 629 (1977). 

5. R. L. Higdon, Initial-boundary value problems for linear hyperbolic  systems, SIAM Rev. 28(2), 

177 (1986). 

6. K.  Thompson, Time  dependent  boundary conditions for hyperbolic systems, J .  Comp.  Phys. 

68, 1 (1987). 

7. M. Baum, T. Poinsot, and D. Thhvenin,  Accurate  boundary  conditions for multicomponent 

reactive flows, J. Comp. Phys. 116, 247 (1994). 

8. B. Gustafsson and A. Sundstrom, Incompletely parabolic problems in fluid dynamics, SIAM 

J. Appl .  Math. 35(2), 343 (1978). 

9. K.-M. Shyue, A  fluid-mixture type algorithm for compressible multicomponent flow with van 

der Waals equation of state, J .  Comp.  Phys. 156, 43  (1999). 

10. K. Harstad  and J .  Bellan, Isolated fluid oxygen drop behavior in fluid hydrogen at rocket 

chamber  pressures, Int. J .  Heat Mass nansfer 41, 3537 (1998). 

11. K.  Harstad  and  J. Bellan, A validated all-pressure fluid drop model for binary mixtures: 

heptane in  nitrogen, AIAA 99-206, Joint AIAA/ASME/SAE  Propulsion  Meeting (1999). 

12. K. Harstad  and J. Bellan, An all-pressure fluid drop model applied to a binary mixture: 

heptane in nitrogen, in press Int. J.  of Multiphase Flow (1999). 

13. S. Sarman  and D. J. Evans, Heat flux and mass diffusion in binary  Lennard-Jones mixtures, 

Phys. Rev. A45(4),  2370 (1992). 

14. J .  Keizer, Statistical  thermodynamics of nonequdibrium processes (Springler-Verlag, New 

York, 1987). 



15. I t .  D. Bird, W. E. Stewart, and E. N .  Lightfoot, 'fiansporl Phenontenu (,JcJhn  Wiley and Sons, 

1960). 

16. K .  Harstad and J.  Bellan, The Lewis number under supercritical  conditions, Int. J .  Heat Mass 

Pansfer 42, 961 (1999). 

17. D. H. Rudy  and J. C. Strikwerda, A nonreflecting outflow boundary-conditions for subsonic 

Navier-Stokes calculations, J .  Comp. Phys. 38(1), 55 (1980). 

18. R. S. Miller, K. Harstad,  and J. Bellan, Direct numerical simulations of supercritical fluid 

mixing layers applied to heptane-nitrogen, submitted  to J .  Fluid Mech. (1999). 

19. J. Prausnitz,  R. Lichtenthaler and E. de Azevedo, Molecular thermodynamics for fluid-phase 

equilibrium (Prentice -Hall, Inc., 1986). 

20. R. S. Miller, and J .  Bellan, Direct numerical simulation of a confined three-dimensional  gas 

mixing layer with  one  evaporating  hydrocarbon-droplet-laden stream, J. Fluid Mech. 384, 

293-338 (1999) 



44 

FIG. 1. Wave profile before reaching boundary, uniform mass fraction, t = 2.85 X 

N~~~~ = 141 

FIG. 2. Wave Profile after reaching boundary, uniform mass fraction, t = 3.80 X 

10-4s, Ntime = 187 

FIG. 3. Wave  profile before reaching boundary, linear maSS fraction, t = 2.01 x 
lo-%, N~~~~ = 104 

209 
FIG. 4. Wave  profile after reaching boundary, linear mass fraction, t = 4.03 X 10e4s, Ntine = 

FIG. 5. Mass fraction from heptane mass source 

FIG. 7. Wave profile after reaching boundary, heptane mass source, t = 3.80 X 
10-49, Ntime = 182 
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